Моменты количества движения точки относительно центра и оси. Момент количества движения материальной точки относительно центра и оси Момент количества движения вала

Для вычисления М. к. д. k материальной точки относительно центра О или оси z справедливы все формулы, приведённые для вычисления момента силы, если в них заменить вектор F вектором количества движения mv . Т. о.,k o = [r · ], где r - радиус-вектор движущейся точки, проведённый из центра О , a k z равняется проекции вектора k o на ось z , проходящую через точку О . Изменение М. к. д. точки происходит под действием момента m o (F ) приложенной силы и определяется теоремой об изменении М. к. д., выражаемой уравнением dk o /dt = m o (F ). Когда m о (F ) = 0, что, например, имеет место для центральных сил, движение точки подчиняется Площадей закону.

Главный М. к. д . (или кинетический момент) механической системы относительно центра О или оси z равен соответственно геометрической или алгебраической сумме М. к. д. всех точек системы относительно того же центра или оси, т. е. K o = Σk oi , K z = Σk zi . Вектор K o может быть определён его проекциями K x , K y , K z на координатные оси. Для тела, вращающегося вокруг неподвижной оси z с угловой скоростью ω, K x = - I xz ω, K y = -I yz ω, K z = I z ω, где l z - осевой, а I xz , l yz - центробежные моменты инерции.

Если ось z является главной осью инерции для начала координат О, то K o = I z ω.

Изменение главного М. к. д. системы происходит под действием только внешних сил и зависит от их главного момента M o e . Эта зависимость определяется теоремой об изменении главного М. к. д. системы, выражаемой уравнением dK o /dt = M o e . Аналогичным уравнением связаны моменты K z и M z e . Если M o e = 0 или M z e = 0, то соответственно K o или K z будут величинами постоянными, т. е. имеет место закон сохранения М. к. д.

Билет 20

Общее уравнение динамики.

Общее уравнение динамики – при движении системы с идеальными связями в каждый данный момент времен сумма элементарных работ всех приложенных активных сил и всех сил инерции на любом возможном перемещении системы будет равна нулю. Уравнение использует принцип возможных перемещений и принцип Даламбера и позволяет составить дифференциальные уравнения движения любой механической системы. Дает общий метод решения задач динамики. Последовательность составления: а) к каждому телу прикладывают действующие на него задаваемые силы, а также условно прикладывают силы и моменты пар сил инерции; б) сообщают системе возможные перемещения; в) составляют уравнения принципа возможных перемещений, считая систему находящейся в равновесии.

Потенциальная сила. Работа потенциальной силы на конечном перемещении.

Потенциальная сила - сила, работа которой зависит только от начального и конечного положения точки её приложения и не зависит ни от вида траектории, ни от закона движения этой точки

Работа потенциальной силы равна разности значений силовой функции в конечной и начальной точках пути и от вида траектории движущейся точки не зависит.

Основным свойством потенциального силового поля и является то, что работа сил поля при движении в нем материальной точки зависит только от начального и конечного положений этой точки и ни от вида ее траектории, ни от закона движения не зависит.

Билет 21

Принцип виртуальных (возможных) перемещений.

Существуют две различные формулировки принципа возможных перемещений. В одной формулировке утверждается, что для равновесия материальной системы необходимо, чтобы равнялась нулю сумма элементарных работ всех внешних сил, приложенных к системе, на любом возможном перемещении.
В другой формулировке, наоборот, говорится, что система должна находиться в равновесии, чтобы сумма элементарных работ всех сил равнялась нулю. Такое определение этого принципа дается, например, в работе: “Виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю”.
Математически принцип возможных перемещений представляется в виде:
, (1)
где - скалярное произведение вектора силы и вектора виртуального перемещения.

Мощность пары сил

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абсолютно твердое тело.

Мощность пары сил:

,

где омега Z – проекция угловой скорости на ось вращения.

Билет 22

1.Прнцип виртуальных перемещений
Рассмотрим виртуальное перемещение точки системы с номером i. Виртуальным перемещением δr i называется мысленное бесконечно малое перемещение точки, допускаемое связями без их разрушения в данное фиксированное мгновение времени.

Если связь одна и описывается уравнением (2), физически ясно, что связь не нарушится, когда вектор виртуального перемещения

где grad f - градиент функции (2) при фиксированном t , перпендикулярный поверхности связи в месте нахождения точки, равный

В вариационном исчислении бесконечно малые величины δr i , δx i , δy i , δz i называются вариациями функций r i , x i , y i , z i . Изменения координат точек или уравнений связи при неизменном времени находятся синхронным варьированием, которое осуществляется согласно левым частям формул (4) и (6).

То есть проекции δx i , δy i , δz i виртуального перемещения точки δr обращают в нуль первую вариацию уравнения связи при условии, что время не варьируется (синхронное варьирование):

(7)

Следовательно, виртуальное перемещение точки не характеризует ее движение, а определяет связь или, в общем случае, связи, наложенные на точку системы. Таким образом, виртуальные перемещения позволяют учесть эффект механических связей, не вводя реакции связей, как мы это делали раньше, и получать уравнения равновесия или движения системы в аналитическом виде, не содержащие неизвестных реакций связей.

2.Элементарная работа
Элементарная работа сил , действующих на абсолютно твердое тело, равна алгебраической сумме двух слагаемых: работы главного вектора этих сил на элементарном поступательном перемещении тела вместе с произвольно выбранным полюсом и работы главного момента сил, взятого относительно полюса, на элементарном вращательном перемещении тела вокруг полюса. [1 ]

Элементарная работа силы равна скалярному произведению силы на дифференциал радиуса-вектора точки приложения силы. [2 ]

Элементарная работа сил при этом зависит от выбора возможного перемещения системы. [3 ]

Элементарная работа силы при вращении тела, на которое сила действуе

Билет 23

1. Принцип виртуальных перемещений в обобщенных координатах.

Запишем принцип, выражая виртуальную работу активных сил системы в обобщенных координатах:

Так как на систему наложены голономные связи, вариации обобщенных координат не зависят между собой и не могут быть одновременно равны нулю. Поэтому последнее равенство выполнится только тогда, когда коэффициенты при δ j (j = 1 ÷ s) одновременно обращаются в нуль, то есть

2.Работа силы на конечном перемещении
Работа
силы на конечном перемещении определяется как интегральная сумма элементарных Работа и при перемещении M 0 M 1 выражается криволинейным интегралом:

Билет 24

1.уравнение Лагранжа второго рода.

Для вывода уравнений запишем принцип Даламбера-Лагранжа в обобщенных координатах в виде -Q j u = Q j (j = 1 ÷ s) .

Принимая во внимание, что Ф i = -m i a i = -m i dV i / dt , получаем:

(1)

(2)

Подставляя (2) в (1) получаем дифференциальное уравнение движения системы в обобщенных координатах, которое названо уравнением Лагранжа второго рода:

(3)

то есть, материальная система с голономными связями описывается уравнениями Лагранжа второго рода по всем s обобщенным координатам.

Отметим важные особенности полученных уравнений.

1. Уравнения (3) - это система обыкновенных дифференциальных уравнений второго порядка относительно s неизвестных функций q j (t), полностью определяющих движение системы.

2. Число уравнений равно числу степеней свободы, то есть движение любой голономной системы описывается наименьшим числом уравнений.

3. В уравнения (3) не нужно включать реакции идеальных связей, что позволяет, находя закон движения несвободной системы, выбором обобщенных координат исключить задачу определения неизвестных реакций связей.

4. Уравнения Лагранжа второго рода позволяют указать единую последовательность действий для решения многих задач динамики, которую часто называют формализмом Лагранжа.

2. Условие относительного покоя материальной точки получают из динамического уравнения Кориолиса, подставив в это уравнение значения относительного ускорения и кориолисовой силы инерции равные нулю:

Момент количества движения материальной точки (кинетический момент) относительно выбранной точки пространства – это результат векторного произведения вектора, проведенного из выбранной точки в любую точку линии действия силы на вектор количества движения материальной точки:

Момент количества движения механической системы (кинетический момент системы) относительно выбранной точки пространства – это сумма моментов количества движения всех материальных точек системы относительно той же точки:

Ограничимся рассмотрением только плоских задач. В этом случае аналогично моменту силы можно считать, что момент количества движения точки является скалярной величиной и равен:

где v i – модуль вектора скорости точки;

h i –плечо.

Знак момента количества движения выбирается так же, как и знак момента силы.

Теорема: момент количества движения поступательно движущегося тела равен произведению массы тела на скорость любой точки тела и на плечо скорости центра масс относительно выбранной точки:

где h c – плечо скорости центра масс системы относительно выбранной точки.

Теорема: Момент количества движения вращающегося тела равен произведению момента инерции тела относительно оси вращения на угловую скорость:

где расстояние от рассматриваемой точки до оси вращения.

Теорема: момент количества движения тела движущегося плоскопараллельно равен сумме момента количества движения центра масс тела относительно выбранной точки и произведения собственного момента инерции тела на угловую скорость:

Элементарный импульс – это произведение момента силы на элементарный промежуток времени действия силы

1.3.11. Принцип возможных перемещений

Возможное перемещение – это любое бесконечно малое перемещение произвольной точки тела, которое допускают наложенные на тело связи без изменения самой связи.

Идеальная связь – это связь, у которой сумма возможных работ всех её реакций на всех возможных перемещениях системы равна нулю.

Все связи, которые рассматривались до этого, исключая шероховатую поверхность, являются идеальными.

Активная сила – любая сила, действующая в системе, исключая силы реакции. Из определения идеальных связей следует, что работа реактивных сил в случае системы с идеальными связями всегда равна нулю.

Число степеней свободы системы – это количество линейно независимых возможных обобщенных перемещений системы. Выбирать независимые перемещения можно произвольным образом. Так плоское тело, покоящееся на плоскости (рис. 1.52), имеет множество возможных перемещений (вправо, влево, вверх под углом), но линейно независимых

Только три (например, горизонтальное смещение , вертикальное смещение вверх dy и угол поворота вокруг точки А - dj ).

Принято обозначать возможные перемещения символом “δ ” перед перемещением. Следует отличать возможные перемещения от действительных. Возможных может быть множество, а действительных только одно. Действительное перемещение обязательно входит в число возможных.

МОМЕНТ КОЛИЧЕСТВА ДВИЖЕНИЯ (кинетический момент, момент импульса, орбитальный момент, угловой момент) - одна из динамич. характеристик движения материальной точки или механич. системы; играет особенно важную роль при изучении вращат. движения. Как и для момента силы, различают M. к. д. относительно центра (точки) и относительно оси.

M. к. д. материальной точки относительно центра О равен векторному произведению радиуса-вектора r точки, проведённого из центра О , на её кол-во движения mv , т. е. k 0 = [r m u ] или в др. обозначениях k 0 = r m u . M. к. д. k z материальной точки относительно оси z, проходящей через центр О , равен проекции вектора k 0 на эту ось. Для вычисления M. к. д. точки справедливы все ф-лы, приведённые для вычисления момента силы , если в них заменить вектор F (или его проекции) вектором m u (или его проекциями). Изменение M. к. д. точки происходит под действием момента m 0 (F ) приложенной силы. Характер этого изменения определяется ур-нием d k /dt = m 0 (F ), являющимся следствием осн. закона динамики. Когда m 0 (F ) = 0, что, напр., имеет место для центр. сил, M. к. д. точки относительно центра О остаётся величиной постоянной; точка движется при этом по плоской кривой и её радиус-вектор в любые равные промежутки времени описывает равные площади. Этот результат важен для небесной механики (см. Кеплера законы ),а также для теории движения космич. летат. аппаратов, ИСЗ и др.

Для механич. системы вводится понятие о главном M. к. д. (или кинетич. моменте) системы относительно центра О , равном геом. сумме M. к. д. всех точек сис-темы относительно того же центра:

Вектор K 0 может быть определён его проекциями на взаимно перпендикулярные оси Oxyz . Величины K x , K y , К z , являются одновременно главным M. к. д. системы относительно соответствующих осей. Для тела, вращающегося вокруг неподвижной оси z с угл. скоростью w, эти величины равны: K x = -I xz w, К у = = -I yz w, K z = I z w, где I z - осевой, a I xz и I yz - центробежные моменты инерции. Если же тело движется около неподвижной точки О , то для него в проекциях на главные оси инерции, проведённые в точке О , будет K x =- I x w x , К у = 1 у w у, K z = I z w z , где I x , 1 у, I z - моменты инерции относительно гл. осей; w x , w y , w z - проекция мгновенной угл. скорости w на эти оси. Из ф-л видно, что направление вектора K 0 совпадает с направлением w лишь тогда, когда тело вращается вокруг одной из своих гл. (для точки О )осей инерции. В этом случае K 0 = I w , где I - момент инерции тела относительно этой гл. оси.

Изменение главного M. к. д. системы происходит только в результате внеш. воздействий и зависит от гл. момента M e 0 внеш. сил; эта зависимость определяется ур-нием dK 0 /dt = M e 0 (ур-ние моментов). В отличие от случая движения одной точки, ур-ние моментов для системы не является следствием ур-ния кол-в движения, и оба эти ур-ния могут применяться для изучения движения системы одновременно. С помощью одного только ур-ния моментов движение системы (тела) может быть полностью определено лишь в случае чисто вращат. движения (вокруг неподвижной оси или точки). Если гл. момент внеш. сил относительно к--н. центра или оси равен нулю, то главный M. к. д. системы относительно этого центра или оси остаётся величиной постоянной, т. е. имеет место закон сохранения M. к. д. (см.

Просмотр: эта статья прочитана 18006 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Теорема об изменении момента количества движения материальной точки

Момент количества движения

Момент количества движения точки М относительно центра О − это вектор, направленный перпендикулярно плоскости, проходящей через вектор количества движения и центр О в ту сторону, откуда поворот вектора количества движения относительно центра О виден против движения часовой стрелки.

Момент количества движения точки М относительно ос и равен произведению проекции вектора количества движения на плоскость перпендикулярную к оси на плечо этой проекции относительно точки О пересечения оси с плоскостью.

Теорема об изменении момента количества движения материальной точки относительно центра

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равняется геометрической сумме моментов сил, действующих на точку, относительно того же центра.

Теорема об изменении момента количества движения материальной точки относительно оси

Производная по времени от момента количества движения материальной точки относительно некоторой неподвижной оси равняется алгебраической сумме моментов сил, действующих на точку, относительно этой же оси.

Законы сохранения момента количества движения материальной точки

  1. Если линия действия равнодействующей приложенных к материальной точке сил все время проходит через некоторый неподвижный центр, то момент количества движения материальной точки остается постоянным.
  2. Если момент равнодействующей приложенных к материальной точке сил относительно некоторой оси все время равняется нулю, то момент количества движения материальной точки относительно этой же оси остается постоянным.

Теорема об изменении главного момента количества движения системы

Кинетический момент

Кинетическим моментом или главным моментом количества движения механической системы относительно центра называют вектор, равный геометрической сумме моментов количества движения всех материальных точек системы относительно этого же центра.

Кинетическим моментом или главным моментом количества движения механической системы относительно оси называют алгебраическую сумму моментов количеств движения всех материальных точек относительно той же оси

Проекция кинетического момента механической системы относительно центра О на ось, проходящую через этот центр, равняется кинетическому моменту системы относительно этой оси.

Теорема об изменении главного момента количества движения системы (относительно центра) - теорема моментов

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра геометрически равняется главному моменту внешних сил, действующих на эту систему, относительно того же центра

Теорема об изменении кинетического момента механической системы (относительно оси)

Производная по времени от кинетического момента механической системы относительно некоторой оси равняется главному моменту внешних сил относительно этой же оси.

Законы сохранения кинетического момента механической системы

  1. Если главный момент внешних сил относительно некоторого неподвижного центра все время равен нулю, то кинетический момент механической системы относительно этого центра величина постоянная.
  2. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент механической системы относительно этой же оси величина постоянная.
  1. Теорема моментов имеет большое значение при изучении вращательного движения тел и разрешает не учитывать заведомо неизвестные внутренние силы.
  2. Внутренние силы не могут изменить главный момент количества движения системы.

Кинетический момент вращающейся системы

Для системы, которая вращается вокруг неподвижной оси (или оси, проходящей через центр масс), кинетический момент относительно оси вращения равен произведению момента инерции относительно этой оси и угловой скорости.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Закон сохранения механической энергии материальной точки и механической системы

Если на материальную точку или механическую систему действуют только консервативные силы, то в любом положении точки или системы сумма кинетической и потенциальной энергий остается величиной постоянной.

Для материальной точки

Для механической системы Т+ П= const

где Т+ П -- полная механическая энергия системы.

Динамика твердого тела

Дифференциальные уравнения движения твердого тела

Эти уравнения можно получить из общих теорем динамики механической системы.

1. Уравнения поступательного движения тела -- из теоремы о движении центра масс механической системы В проекциях на оси декартовых координат

2. Уравнение вращения твердого тела вокруг неподвижной оси - из теоремы об изменении кинетического момента механической системы относительно оси, например, относительно оси

Так как кинетический момент L z твердого тела относительно оси, то если

Так как или, то уравнение можно записать в виде или,форма записи уравнения зависит от того, что следует определить в конкретной задаче.

Дифференциальные уравнения плоскопараллельного движения твердого тела представляют собой совокупность уравнений поступательного движения плоской фигуры вместе с центром масс и вращательного движения относительно оси, проходящей через центр масс:

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг горизонтальной оси, не проходящей через центр масс тела, и движущееся под действием силы тяжести.

Дифференциальное уравнение вращения

В случае малых колебаний.

Тогда, где

Решение этого однородного уравнения.

Пусть при t=0 Тогда

-- уравнение гармонических колебаний.

Период колебаний маятника

Приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого равен периоду колебаний физического маятника.